Lipid Interaction and Membrane Perturbation of Human Islet Amyloid Polypeptide Monomer and Dimer by Molecular Dynamics Simulations
نویسندگان
چکیده
The aggregation of human islet amyloid polypeptide (hIAPP or amylin) is associated with the pathogenesis of type 2 diabetes mellitus. Increasing evidence suggests that the interaction of hIAPP with β-cell membranes plays a crucial role in cytotoxicity. However, the hIAPP-lipid interaction and subsequent membrane perturbation is not well understood at atomic level. In this study, as a first step to gain insight into the mechanism of hIAPP-induced cytotoxicity, we have investigated the detailed interactions of hIAPP monomer and dimer with anionic palmitoyloleolyophosphatidylglycerol (POPG) bilayer using all-atom molecular dynamics (MD) simulations. Multiple MD simulations have been performed by employing the initial configurations where the N-terminal region of hIAPP is pre-inserted in POPG bilayer. Our simulations show that electrostatic interaction between hIAPP and POPG bilayer plays a major role in peptide-lipid interaction. In particular, the N-terminal positively-charged residues Lys1 and Arg11 make a dominant contribution to the interaction. During peptide-lipid interaction process, peptide dimerization occurs mostly through the C-terminal 20-37 region containing the amyloidogenic 20-29-residue segment. Membrane-bound hIAPP dimers display a pronounced ability of membrane perturbation than monomers. The higher bilayer perturbation propensity of hIAPP dimer likely results from the cooperativity of the peptide-peptide interaction (or peptide aggregation). This study provides insight into the hIAPP-membrane interaction and the molecular mechanism of membrane disruption by hIAPP oligomers.
منابع مشابه
Adsorption and Orientation of Human Islet Amyloid Polypeptide (hIAPP) Monomer at Anionic Lipid Bilayers: Implications for Membrane-Mediated Aggregation
Protein misfolding and aggregation cause serious degenerative diseases, such as Alzheimer's and type II diabetes. Human islet amyloid polypeptide (hIAPP) is the major component of amyloid deposits found in the pancreas of type II diabetic patients. Increasing evidence suggests that β-cell death is related to the interaction of hIAPP with the cellular membrane, which accelerates peptide aggregat...
متن کاملBinding Orientations and Lipid Interactions of Human Amylin at Zwitterionic and Anionic Lipid Bilayers
Increasing evidence suggests that the interaction of human islet amyloid polypeptide (hIAPP) with lipids may facilitate hIAPP aggregation and cause the death of pancreatic islet β-cells. However, the detailed hIAPP-membrane interactions and the influences of lipid compositions are unclear. In this study, as a first step to understand the mechanism of membrane-mediated hIAPP aggregation, we inve...
متن کاملConformations of Islet Amyloid Polypeptide Monomers in a Membrane Environment: Implications for Fibril Formation
The amyloid fibrils formed by islet amyloid polypeptide (IAPP) are associated with type II diabetes. One of the proposed mechanisms of the toxicity of IAPP is that it causes membrane damage. The fatal mutation of S20G human IAPP was reported to lead to early onset of type II diabetes and high tendency of amyloid formation in vitro. Characterizing the structural features of the S20G mutant in it...
متن کاملModulation of glycophorin A transmembrane helix interactions by lipid bilayers: molecular dynamics calculations.
Starting from the glycophorin A dimer structure determined by NMR, we performed simulations of both dimer and monomer forms in explicit lipid bilayers with constant normal pressure, lateral area, and temperature using the CHARMM potential. Analysis of the trajectories in four different lipids reveals how lipid chain length and saturation modulate the structural and energetic properties of trans...
متن کاملMechanism of Inhibition of Human Islet Amyloid Polypeptide-Induced Membrane Damage by a Small Organic Fluorogen
Human islet amyloid polypeptide (hIAPP) is believed to be responsible for the death of insulin-producing β-cells. However, the mechanism of membrane damage at the molecular level has not been fully elucidated. In this article, we employ coarse- grained dissipative particle dynamics simulations to study the interactions between a lipid bilayer membrane composed of 70% zwitterionic lipids and 30%...
متن کامل